Product Description

Customized belt conveyor drive drum pulley

mining belt conveyor drum head pulley drive drum roller

Product Application

GCS conveyor pully is manufactured as per customer requirement, with main design unfer national standard, quality inspection focusing on shaft core, welded joint, rubber material and hardness, dynamic balance and so on for longer product lifetime.

Our products are widely used in thermal power generation, harbours, cement plants, metallurgy and as well as the light duty conveying devices for industries.

SPECIFICATIONS 

Product name

belt conveyor pulley drum

Type

Transmission drum, Redirection drum, Driving Electric drum

Length

200mm-1800mm

Materials

Carbon steel, Stainless steel, Rubber

Surface treatment

Smooth, CHINAMFG grooved lagging, Herringbone lagging, Ceramic lagging

Welding

Submerged arc welding

Bearing

SKF, CHINAMFG and other brands at home and abroad

Structure

Tube,shaft,self-aligning bearing,bearing seat/house,hub, locking bushing,end disc

 

About roller,we can make gravity conveyor roller,steel conveyor roller,driving roller,light middle duty conveyor roller,o-belt tapered sleeve roller,gravity tapered roller,polymer sprocket roller and so on. More details, please contact us.

Main Feature

1) CHINAMFG design, suitable for heavy lifting.
2) The bearing housing and steel tube are assembled and welded with a concentric automatic.
3) Cutting of the steel tube and bearing is performed with the use of a digital auto device/machine/equipment.. 
4) The bearing end is constructed to ensure that the roller shaft and bearing can be firmly connected.
5) Fabrication of the roller is effected by an auto device and 100% tested for its concentricity. 
6) Roller and supporting components/materials are manufactured to DIN/ AFNOR/ FEM/ ASTM/ CEMA standard.
7) The casing  is manufactured with highly composite, anti corrosive alloy.
8) The roller is lubricated and free from maintenance.
9) Woring life expectancy is up to 30,000 hours or more, depending on usage.
10)Vacuum sealed which has withstood anti water, salt, snuff, sandstone and dust proof experiments

 

Material: Carbon Steel
Surface Treatment: Baking Paint
Motor Type: Frequency Control Motor
Installation: Horizontal
Color: Customized
Certification: ISO9001-2015
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

pulley

What types of materials are commonly used for V pulley components?

Various materials are used for different components of V pulleys to provide the necessary strength, durability, and performance characteristics. Here are some commonly used materials for V pulley components:

1. Pulley Body:

The main body or rim of a V pulley is often made of materials such as:

  • Cast Iron: Cast iron is a popular choice for its high strength, durability, and resistance to wear. It can handle heavy loads and is commonly used in industrial applications.
  • Steel: Steel is another common material for V pulleys due to its strength and ability to withstand high loads. It is often used in heavy-duty applications that require excellent durability.
  • Aluminum: Aluminum pulleys are lightweight and offer good corrosion resistance. They are commonly used in applications where weight reduction is desired, such as in automotive and aerospace industries.
  • Plastic: Certain types of durable plastics, such as nylon or polypropylene, may be used for pulleys in applications where weight reduction, corrosion resistance, or noise reduction is important.

2. Hub:

The hub of a V pulley, which connects the pulley to the shaft, is typically made of materials like:

  • Steel: Steel hubs provide high strength and durability, making them suitable for heavy-duty applications.
  • Aluminum: Aluminum hubs are lightweight and offer good corrosion resistance. They are commonly used in applications where weight reduction is desired.
  • Cast Iron: Cast iron hubs are known for their strength and durability, providing a secure connection between the pulley and the shaft.

3. Coatings and Finishes:

In addition to the base materials, V pulleys can be coated or finished with protective layers to enhance their performance and longevity. Some common coatings and finishes include:

  • Zinc Plating: Zinc plating provides corrosion resistance, protecting the pulley from environmental factors.
  • Powder Coating: Powder coating offers a durable and aesthetically pleasing finish while providing corrosion protection.
  • Black Oxide: Black oxide coating improves the pulley’s surface hardness and provides some corrosion resistance.
  • Anodizing: Anodizing is commonly used on aluminum pulleys to enhance their corrosion resistance and improve surface durability.

The selection of materials for V pulley components depends on factors such as the application requirements, load capacity, environmental conditions, and desired performance characteristics. Manufacturers consider these factors to ensure that the chosen materials meet the specific needs of the application and provide reliable and efficient power transmission.

pulley

How do V pulleys contribute to efficient power transmission?

V pulleys play a crucial role in enabling efficient power transmission in mechanical systems. Here’s a detailed explanation of how V pulleys contribute to efficient power transmission:

1. Frictional Engagement:

V pulleys are designed with a V-shaped groove that matches the cross-section of V-belts. This groove profile allows for maximum contact area between the pulley and the belt, creating frictional engagement. The friction generated between the pulley and the belt enables the transfer of torque from the driving pulley to the driven pulley.

2. High Friction Coefficient:

V-belts used with V pulleys typically have a high friction coefficient. This characteristic enhances the grip between the belt and the pulley, ensuring efficient power transmission. The high friction coefficient helps prevent belt slippage, even under heavy loads or during sudden acceleration or deceleration.

3. Multiple V-Belt Contact Points:

Due to the V-shaped groove design, V pulleys provide multiple contact points along the length of the belt. This multi-point contact distributes the load across the belt and the pulley, reducing stress concentration on specific areas. It increases the overall power transmission capacity and improves the longevity of the belt and the pulley.

4. Flexibility and Shock Absorption:

V-belts used with V pulleys are flexible and elastic. This flexibility allows them to accommodate slight misalignments between the driving and driven pulleys, reducing stress on the system. Additionally, V-belts have shock-absorbing properties that help dampen vibrations and impacts, protecting the pulleys and other components from excessive wear or damage.

5. Noise Reduction:

V-belt drive systems are known for their quiet operation. The design of V pulleys, combined with the flexibility and smooth engagement of V-belts, minimizes noise generation. This makes V pulleys suitable for applications where noise reduction is desired, such as HVAC systems or indoor environments.

6. Speed Variation and Transmittable Power:

V pulleys allow for easy adjustment of speed variation by changing the pulley diameters or using pulleys with different groove sizes. This flexibility in speed control enables efficient power transmission in various applications. Additionally, V-belt drive systems can transmit a considerable amount of power, making them suitable for both low and high-power applications.

7. Maintenance and Replacement:

V pulleys are relatively easy to install, maintain, and replace. The simplicity of the design and the availability of standardized components contribute to the overall efficiency of the power transmission system. Regular inspection, proper tensioning, and occasional belt replacement ensure the continued efficiency of the V pulley system.

Overall, the unique design features and characteristics of V pulleys, combined with the use of V-belts, contribute to efficient power transmission by maximizing frictional engagement, distributing load, accommodating misalignments, reducing noise, and allowing for speed variation. These factors make V pulleys a popular choice for a wide range of mechanical systems that require reliable and efficient power transmission.

pulley

How do V pulleys differ from other types of pulleys?

V pulleys, also known as V-belt pulleys or sheaves, have distinct characteristics that set them apart from other types of pulleys. Here’s an explanation of how V pulleys differ from other pulleys:

1. Groove Shape:

The most notable difference between V pulleys and other pulleys is the shape of the groove on their outer circumference. V pulleys have a V-shaped groove, which is specifically designed to accommodate V-belts with a trapezoidal cross-section. This groove shape provides a wedging action that enhances the grip between the pulley and the belt, reducing the likelihood of slippage.

2. Friction-Based Power Transmission:

V pulleys utilize a friction-based power transmission system. The V-belt wraps around the V pulley, creating a frictional contact between the belt and the groove. This friction allows for the transfer of rotational motion and torque between the driving source and the driven component. In contrast, other types of pulleys, such as flat pulleys or timing pulleys, may employ different mechanisms, such as flat belts or toothed belts, for power transmission.

3. V-Belt Compatibility:

V pulleys are specifically designed to work in conjunction with V-belts. V-belts are flexible rubber belts with a trapezoidal cross-section that match the V-shaped groove on the pulley. The shape and dimensions of the V-belt are precisely engineered to provide optimal contact and grip on the V pulley. This compatibility between the V pulley and the V-belt ensures efficient power transmission and reduces the risk of slippage.

4. Torque Transmission:

V pulleys are particularly suitable for high torque transmission. The wedging action created by the V-shaped groove and the corresponding shape of the V-belt allows for efficient power transfer even under heavy loads or during sudden changes in speed or direction. The design of V pulleys enables them to transmit higher levels of torque compared to some other types of pulleys.

5. Speed Variation:

Another distinctive feature of V pulleys is the ability to achieve speed variation in power transmission systems. By changing the diameter of the V pulley, different speed ratios can be achieved between the driving source and the driven component. This flexibility in speed control allows for proper matching of operational requirements and efficient power transmission.

6. Damping Effect:

The flexibility of V-belts and the slight elasticity of the rubber material used in V-belts provide a damping effect in V pulley systems. This helps absorb vibrations and shocks in the mechanical system, contributing to smoother operation, reduced noise, and increased component longevity.

7. Common Applications:

V pulleys are commonly used in various applications, including automotive systems, industrial machinery, HVAC systems, and power transmission systems in appliances. They are especially prevalent in systems where high torque transmission, speed variation, and reliable power transmission are required.

By understanding the distinctive features of V pulleys, engineers and designers can select the appropriate pulley type for specific applications, considering factors such as power requirements, torque transmission, speed control, and belt compatibility.

China Good quality Customized Belt Conveyor Drive Drum Pulley   with Best Sales China Good quality Customized Belt Conveyor Drive Drum Pulley   with Best Sales
editor by CX

2023-12-07